Investigation into UDP-glucuronosyltransferase (UGT) enzyme kinetics of imidazole- and triazole-containing antifungal drugs in human liver microsomes and recombinant UGT enzymes.

نویسندگان

  • Karine Bourcier
  • Ruth Hyland
  • Sarah Kempshall
  • Russell Jones
  • Jacqueline Maximilien
  • Nicola Irvine
  • Barry Jones
چکیده

Imidazoles and triazoles represent major classes of antifungal azole derivatives. With respect to UDP-glucuronosyltransferase (UGT) enzymes, the drug metabolism focus has mainly concentrated on their inhibitory effects with little known about azoles as substrates for UGTs. N-Glucuronide metabolites of the imidazole antifungals, tioconazole and croconazole, have been reported, but there are currently no reports of N-glucuronidation of triazole antifungal agents. In this study, evidence for glucuronidation of azole-containing compounds was studied in human liver microsomes (HLM). When a glucuronide metabolite was identified, azoles were incubated in 12 recombinant UGT (rUGT) enzymes, and enzyme kinetics were determined for the UGT with the most intense glucuronide peak. Six imidazole antifungals, three triazoles, and the benzodiazepine alprazolam (triazole) were evaluated in this study. All compounds investigated were identified as substrates of UGT. UGT1A4 was the main enzyme involved in the metabolism of all compounds except for fluconazole, which was mainly metabolized by UGT2B7, probably mediating its O-glucuronide metabolism. UGT1A3 was also found to be involved in the metabolism of all imidazoles but not triazoles. In both HLM and rUGT K(m) values were lower for imidazoles (14.8-144 microM) than for triazoles (158-3037 microM), with the exception of itraconazole (8.4 microM). All of the imidazoles studied inhibited their own metabolism at high substrate concentrations. In terms of UGT1A4 metabolism, itraconazole showed kinetic features characteristic of imidazole rather than triazole antifungals. This behavior is attributed to the physicochemical properties of itraconazole that are similar to those of imidazoles in terms of clogP.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of human UDP-glucuronosyltransferase enzyme(s) responsible for the glucuronidation of posaconazole (Noxafil).

Posaconazole (Noxafil, SCH 56592), an orally available broad-spectrum triazole antifungal, is currently in phase III clinical studies for treating serious opportunistic fungal infections. The major in vitro metabolite of posaconazole formed by human liver microsomes supplemented with uridine 5'-diphosphate-glucuronic acid was a glucuronide of posaconazole (m/z877). Screening of 10 cDNA-expresse...

متن کامل

Determination of drug glucuronidation and UDP-glucuronosyltransferase selectivity using a 96-well radiometric assay.

A rapid and sensitive radiometric assay for UDP-glucuronosyltransferase (UGT) is described. UGT substrates are incubated in 96-well plates with microsomes in the presence of [14C]UDP-glucuronic acid, and 14C-labeled glucuronidation products are separated from the unreacted nucleotide sugar by solid-phase extraction using 96-well extraction plates. The assay was validated with 15 structurally di...

متن کامل

Validation of serotonin (5-hydroxtryptamine) as an in vitro substrate probe for human UDP-glucuronosyltransferase (UGT) 1A6.

Investigation of human UDP-glucuronosyltransferase (UGT) isoforms has been limited by a lack of specific substrate probes. In this study serotonin was evaluated for use as a probe substrate for human UGT1A6 using recombinant human UGTs and tissue microsomes. Of the 10 commercially available recombinant UGT isoforms, only UGT1A6 catalyzed serotonin glucuronidation. Serotonin-UGT activity at 40 m...

متن کامل

Regio- and stereospecific N-glucuronidation of medetomidine: the differences between UDP glucuronosyltransferase (UGT) 1A4 and UGT2B10 account for the complex kinetics of human liver microsomes.

Medetomidine is a chiral imidazole derivate whose dextroenantiomer is pharmacologically active. The major metabolic pathway of dexmedetomidine [(+)-4-(S)-[1-(2,3-dimethylphenyl)ethyl]-1H-imidazole] in humans is N-glucuronidation at the imidazolate nitrogens. We have purified the N3- and N1-glucuronides of dexmedetomidine, termed DG1 and DG2, respectively, according to their elution order in liq...

متن کامل

Acyl glucuronidation of fluoroquinolone antibiotics by the UDP-glucuronosyltransferase 1A subfamily in human liver microsomes.

Acyl glucuronidation is an important metabolic pathway for fluoroquinolone antibiotics. However, it is unclear which human UDP-glucuronosyltransferase (UGT) enzymes are involved in the glucuronidation of the fluoroquinolones. The in vitro formation of levofloxacin (LVFX), grepafloxacin (GPFX), moxifloxacin (MFLX), and sitafloxacin (STFX) glucuronides was investigated in human liver microsomes a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Drug metabolism and disposition: the biological fate of chemicals

دوره 38 6  شماره 

صفحات  -

تاریخ انتشار 2010